Extract the marginal probabilities from a TRONCO model. The return matrix is indexed with rownames which
represent genotype keys - these can be resolved with function keysToNames
. It is possible to
specify a subset of events to build the matrix, a subset of models if multiple reconstruction have
been performed. Also, either the observed or fit probabilities can be extracted.
The marginal probabilities in a TRONCO model.
data(test_model)
as.marginal.probs(test_model)
#> $capri_bic
#> marginal probability
#> gene 4 0.07416667
#> gene 5 0.02946970
#> gene 7 0.16984848
#> gene 29 0.35257576
#> gene 30 0.07954545
#> gene 31 0.02962121
#> gene 32 0.07318182
#> gene 33 0.14984848
#> gene 34 0.07045455
#> gene 36 0.03295455
#> gene 40 0.02727273
#> gene 44 0.02916667
#> gene 47 0.02984848
#> gene 49 0.02750000
#> gene 50 0.03166667
#> gene 51 0.02954545
#> gene 52 0.03068182
#> gene 53 0.03166667
#> gene 54 0.03060606
#> gene 55 0.10598485
#> gene 56 0.05242424
#> gene 66 0.02886364
#> gene 69 0.02916667
#> gene 77 0.05113636
#> gene 88 0.12439394
#> gene 89 0.02810606
#> gene 91 0.10007576
#> gene 111 0.07856061
#> XOR_EZH2 0.19787879
#> OR_CSF3R 0.15500000
#>
#> $capri_aic
#> marginal probability
#> gene 4 0.07416667
#> gene 5 0.02946970
#> gene 7 0.16984848
#> gene 29 0.35257576
#> gene 30 0.07954545
#> gene 31 0.02962121
#> gene 32 0.07318182
#> gene 33 0.14984848
#> gene 34 0.07045455
#> gene 36 0.03295455
#> gene 40 0.02727273
#> gene 44 0.02916667
#> gene 47 0.02984848
#> gene 49 0.02750000
#> gene 50 0.03166667
#> gene 51 0.02954545
#> gene 52 0.03068182
#> gene 53 0.03166667
#> gene 54 0.03060606
#> gene 55 0.10598485
#> gene 56 0.05242424
#> gene 66 0.02886364
#> gene 69 0.02916667
#> gene 77 0.05113636
#> gene 88 0.12439394
#> gene 89 0.02810606
#> gene 91 0.10007576
#> gene 111 0.07856061
#> XOR_EZH2 0.19787879
#> OR_CSF3R 0.15500000
#>
as.marginal.probs(test_model, events=as.events(test_model)[5:15,])
#> $capri_bic
#> marginal probability
#> gene 30 0.07954545
#> gene 31 0.02962121
#> gene 32 0.07318182
#> gene 33 0.14984848
#> gene 34 0.07045455
#> gene 36 0.03295455
#> gene 40 0.02727273
#> gene 44 0.02916667
#> gene 47 0.02984848
#> gene 49 0.02750000
#> gene 50 0.03166667
#>
#> $capri_aic
#> marginal probability
#> gene 30 0.07954545
#> gene 31 0.02962121
#> gene 32 0.07318182
#> gene 33 0.14984848
#> gene 34 0.07045455
#> gene 36 0.03295455
#> gene 40 0.02727273
#> gene 44 0.02916667
#> gene 47 0.02984848
#> gene 49 0.02750000
#> gene 50 0.03166667
#>