Returns a dataframe with all the prediction error score in a TRONCO model. It is possible to specify a subset of events or models if multiple reconstruction have been performed.
All the bootstrap scores in a TRONCO model
data(test_model_kfold)
as.kfold.prederr(test_model_kfold)
#> $capri_bic
#> SELECTED MEAN.PREDERR SD.PREDERR
#> 1 ins_del TET2 0.0875 0.021245915
#> 2 ins_del EZH2 0.0250 0.000000000
#> 3 ins_del ASXL1 0.1750 0.000000000
#> 4 missense_point_mutations SETBP1 0.3500 0.000000000
#> 5 missense_point_mutations NRAS_Ex2_3 0.0750 0.000000000
#> 6 missense_point_mutations KRAS_Ex2_3 0.0250 0.000000000
#> 7 missense_point_mutations TET2 0.0775 0.007905694
#> 8 missense_point_mutations EZH2 0.1500 0.000000000
#> 9 missense_point_mutations CBL_Ex_8_9 0.1175 0.016873714
#> 10 missense_point_mutations IDH2_R140 0.0250 0.000000000
#> 11 missense_point_mutations SF3B1_Ex_12_15 0.0250 0.000000000
#> 12 missense_point_mutations JARID_2_Ex1_18 0.0450 0.015811388
#> 13 missense_point_mutations EED_Ex2_12 0.0500 0.000000000
#> 14 missense_point_mutations CEBPA 0.0250 0.000000000
#> 15 missense_point_mutations EPHB3 0.0275 0.007905694
#> 16 missense_point_mutations ETNK1 0.0250 0.000000000
#> 17 missense_point_mutations GATA2 0.0250 0.000000000
#> 18 missense_point_mutations IRAK4 0.0525 0.021889876
#> 19 missense_point_mutations MTA2 0.0250 0.000000000
#> 20 missense_point_mutations CSF3R 0.1000 0.000000000
#> 21 missense_point_mutations KIT 0.0550 0.019720266
#> 22 nonsense_ins_del WT1 0.0500 0.000000000
#> 23 nonsense_ins_del RUNX_1 0.0500 0.000000000
#> 24 nonsense_ins_del CEBPA 0.0500 0.000000000
#> 25 nonsense_point_mutations TET2 0.1250 0.000000000
#> 26 nonsense_point_mutations EZH2 0.0250 0.000000000
#> 27 nonsense_point_mutations ASXL1 0.1000 0.000000000
#> 28 nonsense_point_mutations CSF3R 0.0750 0.000000000
#> 29 Pattern XOR_EZH2 0.2000 0.000000000
#> 30 Pattern OR_CSF3R 0.1500 0.000000000
#>
#> $capri_aic
#> SELECTED MEAN.PREDERR SD.PREDERR
#> 1 ins_del TET2 0.0775 0.007905694
#> 2 ins_del EZH2 0.0250 0.000000000
#> 3 ins_del ASXL1 0.1925 0.020581815
#> 4 missense_point_mutations SETBP1 0.3500 0.000000000
#> 5 missense_point_mutations NRAS_Ex2_3 0.0750 0.000000000
#> 6 missense_point_mutations KRAS_Ex2_3 0.0250 0.000000000
#> 7 missense_point_mutations TET2 0.0750 0.000000000
#> 8 missense_point_mutations EZH2 0.1500 0.000000000
#> 9 missense_point_mutations CBL_Ex_8_9 0.1450 0.019720266
#> 10 missense_point_mutations IDH2_R140 0.0250 0.000000000
#> 11 missense_point_mutations SF3B1_Ex_12_15 0.0250 0.000000000
#> 12 missense_point_mutations JARID_2_Ex1_18 0.0550 0.015811388
#> 13 missense_point_mutations EED_Ex2_12 0.0500 0.000000000
#> 14 missense_point_mutations CEBPA 0.0250 0.000000000
#> 15 missense_point_mutations EPHB3 0.0375 0.021245915
#> 16 missense_point_mutations ETNK1 0.0250 0.000000000
#> 17 missense_point_mutations GATA2 0.0250 0.000000000
#> 18 missense_point_mutations IRAK4 0.0475 0.018446620
#> 19 missense_point_mutations MTA2 0.0250 0.000000000
#> 20 missense_point_mutations CSF3R 0.1000 0.000000000
#> 21 missense_point_mutations KIT 0.0425 0.020581815
#> 22 nonsense_ins_del WT1 0.0500 0.000000000
#> 23 nonsense_ins_del RUNX_1 0.0500 0.000000000
#> 24 nonsense_ins_del CEBPA 0.0425 0.012076147
#> 25 nonsense_point_mutations TET2 0.1250 0.000000000
#> 26 nonsense_point_mutations EZH2 0.0250 0.000000000
#> 27 nonsense_point_mutations ASXL1 0.1000 0.000000000
#> 28 nonsense_point_mutations CSF3R 0.0750 0.000000000
#> 29 Pattern XOR_EZH2 0.2000 0.000000000
#> 30 Pattern OR_CSF3R 0.1500 0.000000000
#>
as.kfold.prederr(test_model_kfold, models='capri_aic')
#> $capri_aic
#> SELECTED MEAN.PREDERR SD.PREDERR
#> 1 ins_del TET2 0.0875 0.021245915
#> 2 ins_del EZH2 0.0250 0.000000000
#> 3 ins_del ASXL1 0.1750 0.000000000
#> 4 missense_point_mutations SETBP1 0.3500 0.000000000
#> 5 missense_point_mutations NRAS_Ex2_3 0.0750 0.000000000
#> 6 missense_point_mutations KRAS_Ex2_3 0.0250 0.000000000
#> 7 missense_point_mutations TET2 0.0775 0.007905694
#> 8 missense_point_mutations EZH2 0.1500 0.000000000
#> 9 missense_point_mutations CBL_Ex_8_9 0.1175 0.016873714
#> 10 missense_point_mutations IDH2_R140 0.0250 0.000000000
#> 11 missense_point_mutations SF3B1_Ex_12_15 0.0250 0.000000000
#> 12 missense_point_mutations JARID_2_Ex1_18 0.0450 0.015811388
#> 13 missense_point_mutations EED_Ex2_12 0.0500 0.000000000
#> 14 missense_point_mutations CEBPA 0.0250 0.000000000
#> 15 missense_point_mutations EPHB3 0.0275 0.007905694
#> 16 missense_point_mutations ETNK1 0.0250 0.000000000
#> 17 missense_point_mutations GATA2 0.0250 0.000000000
#> 18 missense_point_mutations IRAK4 0.0525 0.021889876
#> 19 missense_point_mutations MTA2 0.0250 0.000000000
#> 20 missense_point_mutations CSF3R 0.1000 0.000000000
#> 21 missense_point_mutations KIT 0.0550 0.019720266
#> 22 nonsense_ins_del WT1 0.0500 0.000000000
#> 23 nonsense_ins_del RUNX_1 0.0500 0.000000000
#> 24 nonsense_ins_del CEBPA 0.0500 0.000000000
#> 25 nonsense_point_mutations TET2 0.1250 0.000000000
#> 26 nonsense_point_mutations EZH2 0.0250 0.000000000
#> 27 nonsense_point_mutations ASXL1 0.1000 0.000000000
#> 28 nonsense_point_mutations CSF3R 0.0750 0.000000000
#> 29 Pattern XOR_EZH2 0.2000 0.000000000
#> 30 Pattern OR_CSF3R 0.1500 0.000000000
#>